Steady symmetry breaking in a trapped-ion spin chain


  • Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg fashions. Phys. Rev, Lett. 17, 1133 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gong, Z.-X. et al. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain. Phys. Rev. B 93, 205115 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Maghrebi, M. F., Gong, Z.-X. & Gorshkov, A. V. Steady symmetry breaking in 1d long-range interacting quantum techniques. Phys. Rev. Lett. 119, 023001 (2017).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachdev, S. Quantum section transitions. Phys. World 12, 33 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Giamarchi, T. Quantum Physics in One Dimension, Vol. 121 (Clarendon Press, 2003).

  • Cazalilla, M., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter techniques to ultracold gases. Rev. of Mod. Phys. 83, 1405 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin techniques. Phys. Rev. B 83, 035107 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. Nonlinear area principle of large-spin heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dalla Torre, E. G., Berg, E. & Altman, E. Hidden order in 1d bose insulators. Phys. Rev. Lett. 97, 260401 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gong, Z.-X. et al. Topological phases with long-range interactions. Phys. Rev. B 93, 041102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ren, J., Wang, Z., Chen, W. & You, W.-L. Lengthy-range order and quantum criticality in antiferromagnetic chains with long-range staggered interactions. Phys. Rev. E 105, 034128 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Choudhury, S. & Liu, W. V. Lengthy-range-ordered section in a quantum heisenberg chain with interactions past nearest neighbors. Phys. Rev. A 104, 013303 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Herbrych, J. et al. Block–spiral magnetism: An unique sort of pissed off order. Proc. Natl Acad. Sci. USA 117, 16226 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giachetti, G., Trombettoni, A., Ruffo, S. & Defenu, N. Berezinskii-Kosterlitz-Thouless transitions in classical and quantum long-range techniques. Phys. Rev. B 106, 014106 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Potirniche, I.-D., Potter, A. C., Schleier-Smith, M., Vishwanath, A. & Yao, N. Y. Floquet symmetry-protected topological phases in cold-atom techniques. Phys. Rev. Lett. 119, 123601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Patrick, Ok., Neupert, T. & Pachos, J. Ok. Topological quantum liquids with long-range couplings. Phys. Rev. Lett. 118, 267002 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bermúdez, A., Tagliacozzo, L., Sierra, G. & Richerme, P. Lengthy-range Heisenberg fashions in quasiperiodically pushed crystals of trapped ions. Phys. Rev. B 95, 024431 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Monroe, C. et al. Programmable quantum simulations of spin techniques with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Joshi, M. Ok. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Remark of a many-body dynamical section transition with a 53-qubit quantum simulator. Nature 551, 601 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morong, W. et al. Remark of stark many-body localization with out dysfunction. Nature 599, 393 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumitrescu, P. T. et al. Dynamical topological section realized in a trapped-ion quantum simulator. Nature 607, 463 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maunz, P. L. W. Excessive Optical Entry Lure 2.0. Technical Report (Sandia Nationwide Lab., 2016).

  • Egan, L. et al. Fault-tolerant management of an error-corrected qubit. Nature 598, 281–286 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, O., Feng, L., Risinger, A., Monroe, C. & Cetina, M. Demonstration of three- and four-body interactions between trapped-ion spins, Nat. Phys. https://doi.org/10.1038/s41567-023-02102-7 (2023).

  • Olmschenk, S. et al. Manipulation and detection of a trapped yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Egan, L. N. Scaling Quantum Computer systems with Lengthy Chains of Trapped Ions. Ph.D. thesis, Univ. of Maryland (2021).

  • Ciavarella, A. N., Caspar, S., Illa, M. & Savage, M. J. State preparation within the Heisenberg mannequin via adiabatic spiraling. Quantum 7, 970 (2023).

    Article 

    Google Scholar
     

  • Chen, C. et al. Steady symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Ok. et al. Entanglement and tunable spin-spin couplings between trapped ions utilizing a number of transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, O. & Monroe, C. Programmable quantum simulations of bosonic techniques with trapped ions. Phys. Rev. Lett. 131, 033604 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagano, G. et al. Quantum approximate optimization of the long-range ising mannequin with a trapped-ion quantum simulator. Proc. Natl Acad. Sci. USA 117, 25396 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaschke, D., Wall, M. L. & Carr, L. D. Open supply matrix product states: opening methods to simulate entangled many-body quantum techniques in a single dimension. Comput. Phys. Commun. 225, 59 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Kac, M., Uhlenbeck, G. & Hemmer, P. On the Van der Waals principle of the vapor-liquid equilibrium. I. Dialogue of a one-dimensional mannequin. J. Math. Phys. 4, 216 (1963).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Defenu, N. Metastability and discrete spectrum of long-range techniques. Proc. Natl Acad. Sci. USA 118, e2101785118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *