Maintain out the genome: a roadmap to fixing the cis-regulatory code

[ad_1]

  • Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell 83, 373–392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambert, S. A. et al. The human transcription components. Cell 172, 650–665 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeitlinger, J. Seven myths of how transcription components learn the cis-regulatory code. Curr. Opin. Syst. Biol. 23, 22–31 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baralle, M. & Baralle, F. E. The splicing code. Biosystems 164, 39–48 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, C., Cluet, D. & Ricci, E. P. Ribosome dynamics and mRNA turnover, a posh relationship beneath fixed mobile scrutiny. Wiley Interdiscip. Rev. RNA 12, e1658 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borbolis, F. & Syntichaki, P. Cytoplasmic mRNA turnover and ageing. Mech. Ageing Dev. 152, 32–42 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieuwkoop, T., Finger-Bou, M., van der Oost, J. & Claassens, N. J. The continuing quest to crack the genetic code for protein manufacturing. Mol. Cell 80, 193–209 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cramer, P. Group and regulation of gene transcription. Nature 573, 45–54 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michael, A. Okay. & Thomä, N. H. Studying the chromatinized genome. Cell 184, 3599–3611 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roeder, R. G. 50+ years of eukaryotic transcription: an increasing universe of things and mechanisms. Nat. Struct. Mol. Biol. 26, 783–791 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subject, A. & Adelman, Okay. Evaluating enhancer operate and transcription. Annu. Rev. Biochem. 89, 213–234 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, B. A. How ought to novelty be valued in science? eLife 6, e28699 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaishnav, E. D. et al. The evolution, evolvability and engineering of gene regulatory DNA. Nature 603, 455–463 (2022). This paper demonstrates that random DNA-trained cis-regulatory fashions are helpful for understanding cis-regulatory evolution and accurately predicted purposeful cis-regulatory variation.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wittkopp, P. J. & Kalay, G. Cis-regulatory parts: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farh, Okay. Okay. et al. Genetic and epigenetic tremendous mapping of causal autoimmune illness variants. Nature 518, 337–343 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maurano, M. T. et al. Systematic localization of frequent disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012). This paper studies that the majority genome-wide affiliation examine variation seems to be regulatory, a discovering that has since been replicated for many advanced traits.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vierstra, J. et al. World reference mapping of human transcription issue footprints. Nature 583, 729–736 (2020). On this paper, the authors use DNase I footprinting to indicate that the majority human enhancers seem to have a comparatively easy logic with few strict spacing or positional necessities.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnosti, D. N. & Kulkarni, M. M. Transcriptional enhancers: clever enhanceosomes or versatile billboards? J. Cell. Biochem. 94, 890–898 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Boer, C. G. et al. Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat. Biotechnol. 38, 56–65 (2020). This paper demonstrates that the cis-regulatory exercise of random DNA can be utilized to mannequin most of the parameters of cis-regulation.

    Article 
    PubMed 

    Google Scholar
     

  • Tycko, J. et al. Excessive-throughput discovery and characterization of human transcriptional effectors. Cell 183, 2020–2035.e16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alerasool, N., Leng, H., Lin, Z.-Y., Gingras, A.-C. & Taipale, M. Identification and purposeful characterization of transcriptional activators in human cells. Mol. Cell 82, 677–695.e7 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiter, F., Wienerroither, S. & Stark, A. Combinatorial operate of transcription components and cofactors. Curr. Opin. Genet. Dev. 43, 73–81 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, B. et al. A protein exercise assay to measure world transcription issue exercise reveals determinants of chromatin accessibility. Nat. Biotechnol. 36, 521–529 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahu, B. et al. Sequence determinants of human gene regulatory parts. Nat. Genet. 54, 283–294 (2022). On this paper, the authors present that random DNA has regulatory exercise in human cells and that it may be used to study cis-regulatory fashions.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balsalobre, A. & Drouin, J. Pioneer components as grasp regulators of the epigenome and cell destiny. Nat. Rev. Mol. Cell Biol. 23, 449–464 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of 1000’s of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossman, S. R. et al. Positional specificity of various transcription issue courses inside enhancers. Proc. Natl Acad. Sci. USA 115, E7222–E7230 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L., Glover, J. N., Hogan, P. G., Rao, A. & Harrison, S. C. Construction of the DNA-binding domains from NFAT, Fos and Jun certain particularly to DNA. Nature 392, 42–48 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perkins, N. D. et al. A cooperative interplay between NF-κB and Sp1 is required for HIV-1 enhancer activation. EMBO J. 12, 3551–3558 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, G. J. & Rao, A. Immunology. Cooperative transcription issue complexes in management. Science 338, 891–892 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolma, A. et al. DNA-dependent formation of transcription issue pairs alters their binding specificity. Nature 527, 384–388 (2015). On this paper, the authors systematically take a look at pairs of transcription components to see which may bind cooperatively to the DNA utilizing high-throughput sequencing SELEX, revealing that many transcription issue pairs favor to bind in a single or a number of of the potential relative preparations.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Henikoff, S. & Shilatifard, A. Histone modification: trigger or cog? Tendencies Genet. 27, 389–396 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loaeza-Loaeza, J., Beltran, A. S. & Hernández-Sotelo, D. DNMTs and impression of CpG content material, transcription components, consensus motifs, lncRNAs, and histone marks on DNA methylation. Genes 11, 1336 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription components and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schübeler, D. Operate and knowledge content material of DNA methylation. Nature 517, 321–326 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kreibich, E., Kleinendorst, R., Barzaghi, G., Kaspar, S. & Krebs, A. R. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol. Cell 83, 787–802.e9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Y. et al. Impression of cytosine methylation on DNA binding specificities of human transcription components. Science 356, eaaj2239 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinson, C. & Chatterjee, R. CG methylation. Epigenomics 4, 655–663 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leman, A. R. & Noguchi, E. The replication fork: understanding the eukaryotic replication equipment and the challenges to genome duplication. Genes 4, 1–32 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flury, V. et al. Recycling of modified H2A-H2B supplies short-term reminiscence of chromatin states. Cell 186, 1050–1065.e19 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laprell, F., Finkl, Okay. & Müller, J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman, R. T. & Struhl, G. Causal position for inheritance of H3K27me3 in sustaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, P. et al. Defining genome structure at base-pair decision. Nature 595, 125–129 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lieberman-Aiden, E. et al. Complete mapping of lengthy vary interactions reveals folding rules of the human genome. Science 326, 289–293 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eagen, Okay. P. Ideas of chromosome structure revealed by Hello-C. Tendencies Biochem. Sci. 43, 469–478 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Bortle, Okay. & Corces, V. G. tDNA insulators and the rising position of TFIIIC in genome group. Transcription 3, 277–284 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulco, C. P. et al. Systematic mapping of purposeful enhancer-promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klann, T. S. et al. CRISPR–Cas9 epigenome enhancing allows high-throughput screening for purposeful regulatory parts within the human genome. Nat. Biotechnol. 35, 561–568 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, C. G., Ray, J. P., Hacohen, N. & Regev, A. MAUDE: inferring expression modifications in sorting-based CRISPR screens. Genome Biol. 21, 134 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rippe, Okay. Liquid-liquid part separation in chromatin. Chilly Spring Harb. Perspect. Biol. 14, a040683 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hnisz, D., Shrinivas, Okay., Younger, R. A., Chakraborty, A. Okay. & Sharp, P. A. A part separation mannequin for transcriptional management. Cell 169, 13–23 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirny, L. A. Nucleosome-mediated cooperativity between transcription components. Proc. Natl Acad. Sci. USA 107, 22534–22539 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgunova, E. & Taipale, J. Structural perspective of cooperative transcription issue binding. Curr. Opin. Struct. Biol. 47, 1–8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avsec, Ž. et al. Base-resolution fashions of transcription-factor binding reveal tender motif syntax. Nat. Genet. 53, 354–366 (2021). On this paper, the authors make distinctive machine studying fashions that seize extremely advanced ChIP-nexus knowledge for pluripotency transcription components, revealing suretendertranscription issue interactions.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Computational identification of various mechanisms underlying transcription factor-DNA occupancy. PLoS Genet. 9, e1003571 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jindal, G. & Farley, E. Enhancer grammar in growth, evolution, and illness — dependencies and interaction. Dev. Cell 56, 575–587 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer exercise from DNA sequence and allows the de novo design of artificial enhancers. Nat. Genet. 54, 613–624 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep studying: new computational modelling methods for genomics. Nat. Rev. Genet. 20, 389–403 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avsec, Ž. et al. Efficient gene expression prediction from sequence by integrating long-range interactions. Nat. Strategies 18, 1196–1203 (2021). This paper describes a deep studying transformer-based sequence-to-expression predictor for the human genome.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, V. & Shendure, J. Predicting mRNA abundance instantly from genomic sequence utilizing deep convolutional neural networks. Cell Rep. 31, 107663 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. & Troyanskaya, O. G. Predicting results of noncoding variants with deep learning-based sequence mannequin. Nat. Strategies 12, 931–934 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Okay. M., Wong, A. Okay., Troyanskaya, O. G. & Zhou, J. A sequence-based world map of regulatory exercise for deciphering human genetics. Nat. Genet. 54, 940–949 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horton, C. A. et al. Brief tandem repeats bind transcription components to tune eukaryotic gene expression. Preprint at bioRxiv https://doi.org/10.1101/2022.05.24.493321 (2022).

  • Janssens, J. et al. Decoding gene regulation within the fly mind. Nature 601, 630–636 (2022). This work describes a deep studying mannequin that may predict tissue specificity of enhancers within the Drosophila mind primarily based on single-cell ATAC-seq knowledge.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus allows improved detection of in vivo transcription issue binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhee, H. S. & Pugh, B. F. Complete genome-wide protein-DNA interactions detected at single-nucleotide decision. Cell 147, 1408–1419 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karollus, A., Mauermeier, T. & Gagneur, J. Present sequence-based fashions seize gene expression determinants in promoters however principally ignore distal enhancers. Genome Biol. 24, 56 (2023). This paper performs a rigorous analysis of state-of-the-art cis-regulatory deep studying fashions skilled on genomics knowledge, noting substantial limitations.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasse, A. et al. How far are we from personalised gene expression prediction utilizing sequence-to-expression deep neural networks? Preprint at bioRxiv https://doi.org/10.1101/2023.03.16.532969 (2023).

  • Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Worldwide Human Genome Sequencing Consortium. Preliminary sequencing and evaluation of the human genome. Nature 409, 860–921 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Nurk, S. et al. The whole sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Okay. et al. A single-cell atlas of chromatin accessibility within the human genome. Cell 184, 5985–6001.e19 (2021). This text supplies an atlas of human single-cell ATAC-seq knowledge, demonstrating the quantity of particular open chromatin areas in particular person human cell varieties.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whalen, S., Schreiber, J., Noble, W. S. & Pollard, Okay. S. Navigating the pitfalls of making use of machine studying in genomics. Nat. Rev. Genet. 23, 169–181 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Koning, A. P. J., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive parts could comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. M. & Sonnhammer, E. L. L. Genomic gene clustering evaluation of pathways in eukaryotes. Genome Res. 13, 875–882 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurst, L. D., Pál, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–310 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lercher, M. J., Urrutia, A. O. & Hurst, L. D. Clustering of housekeeping genes supplies a unified mannequin of gene order within the human genome. Nat. Genet. 31, 180–183 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cannavò, E. et al. Shadow enhancers are pervasive options of developmental regulatory networks. Curr. Biol. 26, 38–51 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barolo, S. Shadow enhancers: incessantly requested questions on distributed cis-regulatory data and enhancer redundancy. BioEssays 34, 135–141 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. & Ovcharenko, I. Enhancer jungles set up strong tissue-specific regulatory management within the human genome. Genomics 112, 2261–2270 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, J.-W., Hendrix, D. A. & Levine, M. S. Shadow enhancers as a supply of evolutionary novelty. Science 321, 1314 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotea, V. et al. Homotypic clusters of transcription issue binding websites are a key part of human promoters and enhancers. Genome Res. 20, 565–577 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luna-Zurita, L. et al. Complicated interdependence regulates heterotypic transcription issue distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schölkopf, B. et al. Towards causal illustration studying. Proc. IEEE 109, 612–634 (2021).

    Article 

    Google Scholar
     

  • Whalen, S. & Pollard, Okay. S. Reply to ‘Inflated efficiency measures in enhancer–promoter interaction-prediction strategies’. Nat. Genet. 51, 1198–1200 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, F. & Fullwood, M. J. Inflated efficiency measures in enhancer–promoter interaction-prediction strategies. Nat. Genet. 51, 1196–1198 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi, W. & Beer, M. A. Native epigenomic state can not discriminate interacting and non-interacting enhancer–promoter pairs with excessive accuracy. PLoS Comput. Biol. 14, e1006625 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, E., Onete, D., Salekin, A. & Faraone, S. V. Genomic machine studying meta-regression: insights on associations of examine options with reported mannequin efficiency. Preprint at medRxiv https://doi.org/10.1101/2022.01.10.22268751 (2022).

  • Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity by co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. Species-specific endogenous retroviruses form the transcriptional community of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patwardhan, R. P. et al. Excessive-resolution evaluation of DNA regulatory parts by artificial saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells utilizing a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory parts at single base-pair decision. Nat. Commun. 10, 3583 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinney, J. B. & McCandlish, D. M. Massively parallel assays and quantitative sequence-function relationships. Annu. Rev. Genomics Hum. Genet. 20, 99–127 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lubliner, S. et al. Core promoter sequence in yeast is a significant determinant of expression stage. Genome Res. 25, 1008–1017 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gertz, J., Siggia, E. D. & Cohen, B. A. Evaluation of combinatorial cis-regulation in artificial and genomic promoters. Nature 457, 215–218 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • King, D. M. et al. Artificial and genomic regulatory parts reveal features of cis-regulatory grammar in mouse embryonic stem cells. eLife 9, e41279 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuh, C. H. & Davidson, E. H. Modular cis-regulatory group of Endo16, a gut-specific gene of the ocean urchin embryo. Dev. Camb. Engl. 122, 1069–1082 (1996).

    CAS 

    Google Scholar
     

  • Hossain, A. et al. Automated design of 1000’s of nonrepetitive elements for engineering steady genetic techniques. Nat. Biotechnol. 38, 1466–1475 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, D. S. & Szostak, J. W. In vitro choice of purposeful nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keefe, A. D. & Szostak, J. W. Practical proteins from a random-sequence library. Nature 410, 715–718 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuperus, J. T. et al. Deep studying of the regulatory grammar of yeast 5′ untranslated areas from 500,000 random sequences. Genome Res. 27, 2015–2024 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattern, P. J. et al. Human 5′ UTR design and variant impact prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Studying the sequence determinants of different splicing from thousands and thousands of random sequences. Cell 163, 698–711 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, S. E., Sudarshan, M. & Regev, O. Machine studying for discovery: deciphering RNA splicing logic. Preprint at bioRxiv https://doi.org/10.1101/2022.10.01.510472 (2022).

  • Bogard, N., Linder, J., Rosenberg, A. B. & Seelig, G. A deep neural community for predicting and engineering various polyadenylation. Cell 178, 91–106.e23 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galupa, R. et al. Enhancer structure and chromatin accessibility constrain phenotypic area throughout Drosophila growth. Dev. Cell 58, 51–62.e4 (2023). This examine demonstrates that random DNA sequences examined in a reporter system present various cell-type-specific expression throughout early Drosophila growth.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wunderlich, Z. & Mirny, L. A. Completely different gene regulation methods revealed by evaluation of binding motifs. Tendencies Genet. 25, 434–440 (2009). This paper demonstrates that eukaryotic transcription components lack ample specificity to uniquely specify genes for activation and so should work combinatorially.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolma, A. et al. DNA-binding specificities of human transcription components. Cell 152, 327–339 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa, N. & Biggin, M. D. Excessive-throughput SELEX dedication of DNA sequences certain by transcription components in vitro. Strategies Mol. Biol. Clifton NJ 786, 51–63 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Luthra, I. et al. Biochemical exercise is the default DNA state in eukaryotes. Preprint at bioRxiv https://doi.org/10.1101/2022.12.16.520785 (2022).

  • Ni, X. et al. Adaptive evolution and the delivery of CTCF binding websites within the Drosophila genome. PLoS Biol. 10, e1001420 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weirauch, M. T. & Hughes, T. R. Conserved expression with out conserved regulatory sequence: the extra issues change, the extra they keep the identical. Tendencies Genet. 26, 66–74 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, E. S. et al. Deep conservation of the enhancer regulatory code in animals. Science 370, eaax8137 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Villar, D. et al. Enhancer evolution throughout 20 mammalian species. Cell 160, 554–566 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotney, J. et al. The evolution of lineage-specific regulatory actions within the human embryonic limb. Cell 154, 185–196 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, C. D. et al. Quantitative genome-wide enhancer exercise maps for 5 Drosophila species present purposeful enhancer conservation and turnover throughout cis-regulatory evolution. Nat. Genet. 46, 685–692 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eichenlaub, M. P. & Ettwiller, L. De novo genesis of enhancers in vertebrates. PLoS Biol. 9, e1001188 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gvozdenov, Z., Barcutean, Z. & Struhl, Okay. Practical evaluation of a random-sequence chromosome reveals a excessive stage and the molecular nature of transcriptional noise in yeast cells.Mol. Cell 83, 1786–1797 (2023).

  • Maniatis, T. et al. Construction and performance of the interferon-β enhanceosome. Chilly Spring Harb. Symp. Quant. Biol. 63, 609–620 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panne, D., Maniatis, T. & Harrison, S. C. An atomic mannequin of the interferon-β enhanceosome. Cell 129, 1111–1123 (2007). This structural examine describes binding of transcription components in a extremely optimized and compact human enhancer.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emera, D., Yin, J., Reilly, S. Okay., Gockley, J. & Noonan, J. P. Origin and evolution of developmental enhancers within the mammalian neocortex. Proc. Natl Acad. Sci. USA 113, E2617–E2626 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong, S. L. & Capra, J. A. Modeling the evolutionary architectures of transcribed human enhancer sequences reveals distinct origins, features, and associations with human trait variation. Mol. Biol. Evol. 38, 3681–3696 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, R. Z. et al. Lively studying of enhancer and silencer regulatory grammar in photoreceptors. Preprint at bioRxiv https://doi.org/10.1101/2023.08.21.554146 (2023).

  • Arnold, C. D. et al. Genome-wide quantitative enhancer exercise maps recognized by STARR-seq. Science 339, 1074–1077 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumayr, C., Pagani, M., Stark, A. & Arnold, C. D. STARR-seq and UMI-STARR-seq: assessing enhancer actions for genome-wide-, high-, and low-complexity candidate libraries. Curr. Protoc. Mol. Biol. 128, e105 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muerdter, F. et al. Resolving systematic errors in extensively used enhancer exercise assays in human cells. Nat. Strategies 15, 141–149 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerkmann, M. et al. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of sort I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol. 170, 4465–4474 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harton, M. D., Koh, W. S., Bunker, A. D., Singh, A. & Batchelor, E. p53 pulse modulation differentially regulates goal gene promoters to manage cell destiny selections. Mol. Syst. Biol. 15, e8685 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamson, A. et al. Sign transduction controls heterogeneous NF-κB dynamics and goal gene expression by cytokine-specific refractory states. Nat. Commun. 7, 12057 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umans, B. D., Battle, A. & Gilad, Y. The place are the disease-associated eQTLs? Tendencies Genet. 37, 109–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lalanne, J.-B. et al. Multiplex profiling of developmental enhancers with quantitative, single-cell expression reporters. Preprint at bioRxiv https://doi.org/10.1101/2022.12.10.519236 (2022).

  • Zhao, S. et al. A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nat. Genet. 55, 346–354 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murtha, M. et al. FIREWACh: high-throughput purposeful detection of transcriptional regulatory modules in mammalian cells. Nat. Strategies 11, 559–565 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levo, M. et al. Systematic investigation of transcription issue exercise within the context of chromatin utilizing massively parallel binding and expression assays. Mol. Cell 65, 604–617.e6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joung, J. et al. A transcription issue atlas of directed differentiation. Cell 186, 209–229.e26 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calderon, D. et al. TransMPRA: a framework for assaying the position of many trans-acting components at many enhancers. Preprint at bioRxiv https://doi.org/10.1101/2020.09.30.321323 (2020).

  • Ng, A. H. M. et al. A complete library of human transcription components for cell destiny engineering. Nat. Biotechnol. 39, 510–519 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sidore, A. M., Plesa, C., Samson, J. A., Lubock, N. B. & Kosuri, S. DropSynth 2.0: high-fidelity multiplexed gene synthesis in emulsions. Nucleic Acids Res. 48, e95 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plesa, C., Sidore, A. M., Lubock, N. B., Zhang, D. & Kosuri, S. Multiplexed gene synthesis in emulsions for exploring protein purposeful landscapes. Science 359, 343–347 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camellato, B. R., Brosh, R., Maurano, M. T. & Boeke, J. D. Genomic evaluation of an artificial reversed sequence reveals default chromatin states in yeast and mammalian cells. Preprint at bioRxiv https://doi.org/10.1101/2022.06.22.496726 (2022).

  • Pinglay, S. et al. Artificial regulatory reconstitution reveals rules of mammalian Hox cluster regulation. Science 377, eabk2820 (2022). The authors of this examine synthesized artificial variants of the HOXA cluster, as much as roughly 170 kb of artificial DNA to dissect the regulatory logic of the locus.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Debugging and consolidating a number of artificial chromosomes reveals combinatorial genetic interactions. Cell 186, 5220–5236 (2023).

  • Venter, J. C., Glass, J. I., Hutchison, C. A. & Vashee, S. Artificial chromosomes, genomes, viruses, and cells. Cell 185, 2708–2724 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeke, J. D. et al. The Genome Venture-Write. Science 353, 126–127 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Battaglia, S. et al. Lengthy-range phasing of dynamic, tissue-specific and allele-specific regulatory parts. Nat. Genet. 54, 1504–1513 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krebs, A. R. Finding out transcription issue operate within the genome at molecular decision. Tendencies Genet. 37, 798–806 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020). This paper studies genome-scale single-molecule measurements of transcription issue and nucleosome binding throughout lengthy (roughly 10 kb) chromatin fragments.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koonin, E. V. Splendor and distress of adaptation, or the significance of impartial null for understanding evolution. BMC Biol. 14, 114 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy, S. R. The ENCODE challenge: missteps overshadowing successful. Curr. Biol. 23, R259–R261 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J., Koo, B.-Okay. & Knoblich, J. A. Human organoids: mannequin techniques for human biology and medication. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vierbuchen, T. & Wernig, M. Molecular roadblocks for mobile reprogramming. Mol. Cell 47, 827–838 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu, L., Lalwani, G., Gella, S. & He, H. An empirical examine on robustness to spurious correlations utilizing pre-trained language fashions. Trans. Assoc. Comput. Linguist. 8, 621–633 (2020).

    Article 

    Google Scholar
     

  • Evans, R. et al. Protein advanced prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Baek, M., McHugh, R., Anishchenko, I., Baker, D. & DiMaio, F. Correct prediction of protein–nucleic acid complexes utilizing RoseTTAFoldNA. Nat. Strategies https://doi.org/10.1038/s41592-023-02086-5 (2023).

  • Koo, P. Okay. & Ploenzke, M. Enhancing representations of genomic sequence motifs in convolutional networks with exponential activations. Nat. Mach. Intell. 3, 258–266 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, E. I., Shrikumar, A. & Kundaje, A. In direction of extra reasonable simulated datasets for benchmarking deep studying fashions in regulatory genomics. In Proc. sixteenth Machine Studying in Computational Biology 58–77 (PMLR, 2022).

  • Rafi, A. M. et al. Analysis and optimization of sequence-based gene regulatory deep studying fashions. Preprint at bioRxiv https://doi.org/10.1101/2023.04.26.538471 (2023).

  • Weirauch, M. T. et al. Analysis of strategies for modeling transcription issue sequence specificity. Nat. Biotechnol. 31, 126–134 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, P. et al. Inferring gene expression from ribosomal promoter sequences, a crowdsourcing method. Genome Res. 23, 1928–1937 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pak, M. A. et al. Utilizing AlphaFold to foretell the impression of single mutations on protein stability and performance. PLoS ONE 18, e0282689 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buel, G. R. & Walters, Okay. J. Can AlphaFold2 predict the impression of missense mutations on construction? Nat. Struct. Mol. Biol. 29, 1–2 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Leave a Reply

    Your email address will not be published. Required fields are marked *